US009342332B2

a2z United States Patent (10) Patent No.: US 9,342,332 B2
Jubran et al. (45) Date of Patent: *May 17, 2016
(54) CLOUD-BASED BUILD SERVICE (56) References Cited
(71) Applicant: Microsoft Corporation, Redmond, WA U.S. PATENT DOCUMENTS
(US) 8,489,929 B2* 7/2013 Lametal.coceonennn. 714/38.1
2007/0234320 Al* 10/2007 ... 717/140
(72) Inventors: Marwal.l E:.Jubran, Redmond, WA 5009/0049430 AL* 2/2000 217140
(US); Vitalii Tsybulnyk, Redmond, WA 2012/0017210 Al* 1/2012 Hugginsetal.c......... 718/1
(US); Aleksandr Gershaft, Redmond,
WA (US); Vladimir Petrenko, OTHER PUBLICATIONS

Redmond, WA (US
Us) “Supplementary Search Report Issued in European Patent Applica-

(73) Assignee: Microsoft Technology Licensing, LLC, tion No. 12827532.8”, Mailed Date: Apr. 1, 2015, 6 Pages.
Redmond, WA (US) Schiffman, et al., “Justifying Using a Virtual Machine Verifier”, In
’ Computer Security Applications Conference, Dec. 7, 2009, pp.

(*) Notice: Subject to any disclaimer, the term of this 83-92.

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-

* cited by examiner

Primary Examiner — Philip Wang

claimer. (74) Attorney, Agent, or Firm — Ben Tabor; Kate Drakos;
(21) Appl. No.: 14/158,447 Micky Minhas

(22) Filed: Jan. 17, 2014 67 ABSTRACT
(65) Prior Publication Data Building binary packages for software products, particularly
large-scale software products, is a highly computation inten-
US 2014/0137116 Al May 15, 2014 sive process. Thus, it is desirable to distribute the workload
over a large number of computing nodes so as to have the
Related U.S. Application Data build process complete in an optimal period of time. One
(63) Continuation of application No. 13/221,202, filed on environment providing compute resources that can be utilized
Aug. 30, 2011, now Pat. No. 8,635,607. for a highly available and dynamically scalable distributed
build process is an elastic compute cloud. In such an environ-
(51) Imt.CL ment, virtual machines can be instantiated and destroyed as
GOG6F 9/45 (2006.01) the resource requirements of the build process dictate. This
GO6F 9/455 (2006.01) has the advantage that dedicated hardware is unneeded, and
GO6F 9/44 (2006.01) excess capacity on the hardware employed can be employed
GOG6F 9/50 (2006.01) for other computation tasks when the build process is idle.
(52) U.S.CL Presented herein are systems, methods and computer storage

CPC GO6F 9/455 (2013.01). GO6F 8/70 (2013.01). media for distributing a highly available and scalable build
GO6F 8/71 (2013.01)2 GO6F 9/505 (2013.01’) service, suitable for use in an elastic compute environment or

(58) Field of Classification Search other distributed environment.
None
See application file for complete search history. 20 Claims, 6 Drawing Sheets

20402

CBTAINLIST OF
NECESSARY FILES

nnnnn

TRANSFER BINARIES TO.
‘SIGNING SERVER

=

TRANSFER PACKAGES TO
‘STORAGE SERVICE
™
‘GENERATE USER.

NOTIFIGATIGN THAT
[PACKAGES ARE AVAILABLE|

U.S. Patent May 17, 2016

MEMORY

Sheet 1 of 6

PROCESSOR(S)

US 9,342,332 B2

/O PORT(S)

114/

PRESENTATION
COMPONENT(S)

\118

I/O COMPONENTS

116/

1ooj

\120

POWER SUPPLY

\122

FIG. 1.

U.S. Patent May 17, 2016
202
200 .
DETERMINE BRANCHES TO
BUILD
7 203
IDENTIFY VIRTUAL
MACHINE(S)

v 204

IDENTIFY FILES FOR EACH

BRANCH

Y 206

RETRIEVE IDENTIFIED
FILES FROM SOURCE
REPOSITORY

* 208

TRANSFER FILES TO
APPROPRIATE VIRTUAL
MACHINES

Y 209

DEPLOY BUILD
ENVIRONMENT(S)

Y 208

BUILD BINARIES FROM
SOURCE FILES

* 212

TRANSFER BINARIES TO
SIGNING SERVER

* 214

GENERATE SIGNATURES
FROM BINARIES

Y 216

TRANSFER SIGNATURES
TO VIRTUAL MACHINES

Y 218

BUILD PACKAGES FROM
BINARIES AND DIGITAL
SIGNATURES

Y 220

TRANSFER PACKAGES TO
STORAGE SERVICE

* 222

GENERATE USER
NOTIFICATION THAT
PACKAGES ARE AVAILABLE

Sheet 2 of 6

US 9,342,332 B2

/204(2)

OBTAIN LIST OF
NECESSARY FILES

l /~204(b)

FOR EACH NECESSARY

FILE

l /204(c)

IDENTIFY DESTNATION
VMs

204(d)
YES

VM
ALREADY HAS
FILE?

NO
/~204(e)

ADD TO LIST OF FILES
TO BE TRANSFERRED

v /- 204(7)

FINALIZE LISTS

FIG. 2.

U.S. Patent May 17, 2016

300\

318

Sheet 3 of 6 US 9,342,332 B2

318

VIRTUAL MACHINE SERVER

326 328
) 322) 3%

VIRTUAL MACHINE SERVER

VIRTUAL MACHINE| [VIRTUAL MACHINE

VIRTUAL MACHINE| [VIRTUAL MACHINE

304 302 312
SOURCE BUILD SERVICE STORAGE
REPOSITORY CONTROLLER SERVICE
314
SIGNING SERVER
[
306 1
- 316
SOURCE [
REPOSITORY

310

FIG. 3.

U.S. Patent

400

402

RECEIVE SOURCE FILES

i 404

USE SOURCE FILES TO
GENERATE BINARY
FILES

i /406

SEND
REPRESENTATIONS OF
BINARY FILES

l /408

RECEIVE DIGITAL
SIGNATURES

i f410

GENERATE BINARY
PACKAGES

\ f412

SEND BINARY
PACKAGES

FIG. 4.

May 17, 2016

Sheet 4 of 6

500

600

US 9,342,332 B2

502

RECEIVE REQUEST FOR
SOURCE FILES

/504

SEND SOURCE FILES

FIG. 5.

602

RECEIVE
REPRESENTATIONS OF
BINARY FILES

604

GENERATE DIGITAL
SIGNATURES

606

SEND DIGITAL
SIGNATURES

FIG. 6.

U.S. Patent

700

May 17, 2016

702
r

DETERMINE BRANCHES TO

BUILD

¢ 704

IDENTIFY SOURCE FILES
FOR EACH BRANCH

706
v s
RETRIEVE SOURCE FILES
708
v s

TRANSFER SOURCE FILES
TO APPROPRIATE VIRTUAL
MACHINES

¢ f710

RECEIVE BINARY FILE
REPRESENTATIONS

¢ f712

SEND BINARY FILE
REPRESENTATIONS TO
SIGNING SERVER

Sheet 5 of 6

¢ f714
RECEIVE DIGITAL
SIGNATURES
716
v
SEND DIGITAL
SIGNATURES TO VIRTUAL
MACHINES
718
Vs
RECEIVE BINARY
PACKAGES
¢ f720
MAKE BINARY PACKAGES
AVAILABLE
722
v s

GENERATE USER
NOTIFICATION THAT

PACKAGES ARE AVAILABLE

US 9,342,332 B2

FIG. 7.

U.S. Patent

800

May 17, 2016 Sheet 6 of 6

802

RECEIVE LIST OF BRANCHES
AND SOURCE FILES

l e 804

INSTANTIATE VIRTUAL
MACHINES

L r 806

TRANSFER APPROPRIATE
SOURCE FILES TO VIRTUAL
MACHINES

l s 808

COLLECT BINARY FILES

l f810

ACQUIRE DIGITAL SIGNATURES

l f812

GENERATE BINARY PACKAGES

l 814

MAKE BINARY PACKAGES
AVAILABLE FOR RETRIEVAL

l 816

GENERATE NOTIFICATION

FIG. 8.

US 9,342,332 B2

US 9,342,332 B2

1
CLOUD-BASED BUILD SERVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims priority
from, U.S. patent application Ser. No. 13/221,202, filed Aug.
30, 2011, entitled “CLOUD-BASED BUILD SERVICE”
which is incorporated herein by reference in its entirety.

BACKGROUND

Building binary packages for software products, particu-
larly large-scale software products, is a highly computation-
ally intensive process; thus, it is desirable to distribute the
workload over a large number of computing nodes so as to
have the build process complete in a reasonable period of
time. However, the demand for such a build service can be
highly intermittent, so it is undesirable to have dedicated
build resources that would stand idle during periods of low
demand. Accordingly, methods and system for leveraging
cloud resources in order to distribute a build service in a
highly available, dynamically scalable, and efficient fashion
are provided herein.

SUMMARY

Embodiments of the present invention relate to systems,
methods and computer storage media for distributing a highly
available, dynamically scalable, and efficient build service.
One environment providing compute resources that can be
utilized for a scalable distributed build process is an elastic
compute cloud. In such an environment, virtual machines can
be instantiated and destroyed as the resource requirements of
the build process dictate. One advantage of this approach is
that dedicated hardware is unneeded, and excess capacity on
the hardware can be employed for other computation tasks
when the build process is idle. However, it may be advanta-
geous for certain components to remain unvirtualized. In
certain applications, for example, signing keys are tightly
controlled on dedicated servers rather than being permitted to
be stored on shared hardware. Thus, the architecture dis-
closed herein provides for a system which is efficient, scal-
able, highly available, and secure.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Ilustrative embodiments of the present invention are
described in detail below with reference to the attached draw-
ing figures, and wherein:

FIG. 1 depicts an exemplary computing device suitable for
implementing embodiments of the present invention;

FIG. 2 depicts a flowchart diagram in accordance with one
aspect of the present invention;

FIG. 3 depicts an environment suitable for implementing
embodiments of the present invention;

FIG. 4 depicts a flowchart diagram for a method of pro-
cessing source files to produce binary packages in accordance
with another aspect of the present invention, suitable for
execution by a virtual machine;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 depicts a flowchart diagram for a method of provid-
ing source files on demand, in accordance with another aspect
of the present invention, suitable for execution by a source
repository;

FIG. 6 depicts a flowchart diagram for a method of gener-
ating digital signatures for binary files in accordance with
another aspect of the present invention, suitable for execution
by a signing server;

FIG. 7 depicts a flowchart diagram for a method of con-
trolling a build service in accordance with another aspect of
the present invention, suitable for execution by a build service
controller; and

FIG. 8 depicts a flowchart diagram for operating a virtual
machine server in order to produce binary packages from
source files in accordance with yet another aspect of the
present invention.

DETAILED DESCRIPTION

The subject matter of the present invention is described
with specificity to meet statutory requirements. However, the
description itself is not intended to define the scope of the
claims. Rather, the inventors have contemplated that the
claimed subject matter might also be embodied in other ways,
to include different steps or combinations of steps similar to
the ones described in this document, in conjunction with other
present or future technologies. Moreover, although the term
“step” may be used herein to connote different elements of
methods employed, the term should not be interpreted as
implying any particular order among or between various steps
herein disclosed unless and except when the order of indi-
vidual steps is explicitly described. Further, the present inven-
tion is described in detail below with reference to the attached
drawing figures, which are incorporated in their entirety by
reference herein.

Embodiments of the present invention relate to methods
and architecture for a highly available, scalable, distributed
service. Accordingly, in one aspect, the present invention
comprises one or more computer storage media having com-
puter-executable instructions embodied thereon that, when
executed, cause a computing device to perform a method of
distributing a highly available, scalable build service, the
method comprising determining a branch to build, identifying
avirtual machine for building at least a part of the branch, and
identifying a plurality of source files to be transferred for the
branch, wherein the virtual machine processes at least a
source file of the plurality of source files to generate a corre-
sponding binary file. The method further comprises transfer-
ring the source file of the plurality of source files to the virtual
machine, deploying a build environment on the virtual
machine, and causing the virtual machine to process at least
the source file of the plurality of source files so as to generate
a binary file. The method additionally comprises causing a
digital signature for the binary file to be generated, transtfer-
ring the digital signature to a second virtual machine, and
causing at least the second virtual machine to generate a
binary package from at least the binary file and the digital
signature.

In another aspect, the invention comprises a highly avail-
able, scalable, distributed build service system comprising a
plurality of virtual machines, each of which receives a source
file, processes at least the source file so as to generate a binary
file, receives a digital signature corresponding to the binary
file, and generates a binary package from at least the binary
file and the digital signature. The build system also comprises
a first source repository that stores the source file, and sends
the source file to a build service controller. The build system

US 9,342,332 B2

3

further comprises a signing server that receives a representa-
tion of the binary file sufficient to generate a digital signature
for the binary file, and generates the digital signature corre-
sponding to the representation of the binary file. The build
system also comprises the build service controller, which is
functionally connected to the plurality of virtual machines,
the first source repository, and the signing server, and which
determines a branch to build, identifies a plurality of source
files to be transferred for the branch, retrieves said plurality of
source files from at least the first source repository, sends a
first source file of the plurality of source files to a first virtual
machine of the plurality of virtual machines, receives the
representation of the binary file sufficient to generate the
digital signature for the binary file and forwards the represen-
tation to the signing server, and receives the digital signature
and forwards the digital signature to a second virtual machine
of the plurality of virtual machines.

In yet another aspect, the invention comprises a computer-
implemented method suitable for use in a distributed com-
puting environment utilizing a processor and a memory for
implementing a highly available, scalable, distributed build
service, the method comprising receiving, at a single physical
machine, a plurality of source files corresponding to a plural-
ity of binary files to be generated and instantiating a plurality
of'virtual machines on a single physical machine, each virtual
machine of the plurality of virtual machines configured with
a build environment. The plurality of virtual machines is a
number of virtual machines equal to a number of binary files
to be generated at the single physical machine. The method
further comprises sending to each virtual machine of the
plurality of virtual machines those source files corresponding
to a respective single binary file of the plurality of binary files,
causing each virtual machine of the plurality of virtual
machines to generate the respective binary file from the
source files, causing a digital signature to be generated for at
least a binary file of a plurality of generated binary files, and
causing a binary package to be generated. The binary package
comprises a binary file and a corresponding digital signature.

Having briefly described an overview of embodiments of
the present invention, an exemplary operating environment
suitable for implementing embodiments hereof is described
below.

Referring to the drawings in general, and initially to FIG. 1
in particular, an exemplary operating environment suitable
for implementing embodiments of the present invention is
shown and designated generally as computing device 100.
Computing device 100 is but one example of a suitable com-
puting environment and is not intended to suggest any limi-
tation as to the scope of use or functionality of the invention.
Neither should the computing environment including device
100 be interpreted as having any dependency or requirement
relating to any one or combination of modules/components
illustrated.

Embodiments may be described in the general context of
computer code or machine-usable instructions, including
computer-executable instructions such as program modules,
being executed by a computer or other machine, such as a
personal data assistant or other handheld device. Generally,
program modules including routines, programs, objects,
modules, data structures, and the like, refer to code that per-
forms particular tasks or implements particular abstract data
types. Embodiments may be practiced in a variety of system
configurations, including hand-held devices, consumer elec-
tronics, general-purpose computers, specialty computing
devices, etc. Embodiments may also be practiced in distrib-

40

45

55

4

uted computing environments where tasks are performed by
remote-processing devices that are linked through a commu-
nications network.

With continued reference to FIG. 1, computing device 100
includes a bus 110 that directly or indirectly couples the
following devices: memory 112, one or more processors 114,
one or more presentation modules 116, input/output (1/O)
ports 118, I/O modules 120, and an illustrative power supply
122. Bus 110 represents what may be one or more busses
(such as an address bus, data bus, or combination thereof).
Although the various blocks of FIG. 1 are shown with lines
for the sake of clarity, in reality, delineating various modules
is not so clear, and metaphorically, the lines would more
accurately be grey and fuzzy. For example, one may consider
a presentation module such as a display device to be an /O
module. Also, processors have memory. The inventors hereof
recognize that such is the nature of the art, and reiterate that
the diagram of FIG. 1 is merely illustrative of an exemplary
computing device that can be used in connection with one or
more embodiments. Distinction is not made between such
categories as “workstation,” “server,” “laptop,” “hand-held
device,” etc., as all are contemplated within the scope of FIG.
1 and reference to “computer” or “computing device.”

Computing device 100 typically includes a variety of com-
puter-readable media. By way of example, and not limitation,
computer-readable media may comprise the following exem-
plary non-transitory media: Random Access Memory
(RAM); Read Only Memory (ROM); Electronically Erasable
Programmable Read Only Memory (EEPROM); flash
memory or other memory technologies; CDROM, digital
versatile disks (DVD) or other optical or holographic media;
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that can
be used to encode desired information and be accessed by
computing device 100.

Memory 112 includes computer-storage media in the form
of volatile and/or nonvolatile memory. The memory may be
removable, non-removable, or a combination thereof. Exem-
plary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. Computing device 100
includes one or more processors that read data from various
entities such as memory 112 or /O modules 120. Presentation
module(s) 116 present data indications to a user or other
device. Exemplary presentation modules include a display
device, speaker, printing module, vibrating module, and the
like. I/O ports 118 allow computing device 100 to be logically
coupled to other devices including /O modules 120, some of
which may be built in. [llustrative modules include a micro-
phone, joystick, game pad, satellite dish, scanner, printer,
wireless device, and the like.

Turning now to FIG. 2, a flowchart diagram in accordance
with one aspect of the present invention is presented, and
referred to generally by reference numeral 200. In certain
embodiments, this method is suitable for execution by a build
system controller. Initially, at a step 202, a list of one or more
branches to build is determined. As is understood in the art, a
“branch” is a pre-defined configuration of build settings and
source code files (or portions of source code files) to create a
particular version of a software product from a common code
repository. For example, a code base could have “Develop-
ment” and “Release” branches. As another example, a code
base could have different branches for different operating
systems or hardware platforms. In yet another example, a
code base could have branches for different feature sets, such
as “Basic,” “Home,” Professional,” and “Enterprise” ver-
sions. Commonly, different branches will share substantial
portions of source code, and differ only in certain respects. In

US 9,342,332 B2

5

one embodiment, the determination of which branches to
build is made based on user input. In another embodiment, a
configuration file is consulted to determine which branches to
build. In yet another embodiment, the current build environ-
ment is used to determine which branches to build.

Next, at a step 203, the virtual machines for the build are
identified. In one embodiment, the build service initially has
apool of virtual machines instantiated on one or more virtual
machine servers and standing idle; virtual machines are first
selected from this pool and, if additional capacity is needed,
additional virtual machines are instantiated as needed. In a
variation of this embodiment, the size of the pool of pre-
instantiated virtual machines is increased or decreased
according to historical demand. In another embodiment, vir-
tual machines are simply instantiated on demand.

After the virtual machines for the build are identified, a list
of files that should be transferred to the worker virtual
machines in order to build those branches is determined at a
step 204. In one embodiment, step 204 is accomplished as
shown by substeps 204(a)-204(f). Ata step 204(a), a list of all
files used to build all of the selected branches is compiled. In
certain embodiments, this information is obtained from build
configuration files. Next, at a step 204(b), the succeeding
steps 204(c)-204(e) are repeated for each file so identified. At
step 204(c), one or more virtual machines (VMs) which will
require that file to build the branches are identified. At step
204(d), it is determined whether each VM so identified
already has a copy of the file. A VM may already have a copy
of the file, for example, from building another branch that
used the file, or from building a previous version of the current
branch if the file remains unchanged in the current branch. In
certain embodiments, files are preemptively loaded onto VMs
which might use them later to utilize otherwise unused trans-
fer bandwidth and/or storage space. If it is determined that the
VM does not already have the file, the file is added to a list of
files to be transferred to that VM at a step 204(e). Otherwise,
processing returns to step 204(b) to consider the next file.
Once each file has been processed by steps 204(c)-204(e), the
lists of files to be transferred to each VM are finalized at a step
204(f).

Once the files to be transferred are identified at step 204,
they are retrieved from one or more source repositories at a
step 206. As described above, in some embodiments, certain
of'the files may already be present in local storage for one of
a variety of reasons, and these files need not be retrieved.
Next, at a step 208, the files previously identified are trans-
ferred to the appropriate virtual machines. Note that certain
files may be used by multiple virtual machines and accord-
ingly are transferred to each of those machines. In one
embodiment, virtual machines are grouped onto virtual
machine servers according to the degree of commonality of
files which they will require in order to minimize the network
overhead of file transfers. In another embodiment, virtual
machines are assigned to virtual machine servers according to
a degree of commonality between the files they will require
and the files previously cached at the virtual machine server.

Next, at a step 209, build environments are distributed to
virtual machines as needed. In certain embodiments, build
environments are instead distributed to virtual machines
before source files are transferred to virtual machines. One
role of the build environment is to drive the build process. In
some embodiments, the build environment contains an agent
that responds to the build service controller, provides status of
activities, and executes commands. In other embodiments,
the build environment responds directly to user input in order
to perform activities. The build environment can further com-
prise tools and build components such as compilers, assem-

10

15

20

25

30

35

40

45

50

55

60

65

6

blers, linkers and other tools, as well as the workflow used to
process source files in order to generate binary files.

At this point, the virtual machines can begin the build
process by processing the source files to generate binary files.
In one embodiment of the invention, each virtual machine is
responsible for generating all of the binary files associated
with a given branch. In another embodiment, each virtual
machine is responsible for generating a single binary (i.e. the
number of virtual machines is the same as the number of
binaries). Inyet another embodiment, the set of all binary files
to be generated is allocated over the available virtual
machines in such a way so as to equalize the processing
performed by each virtual machine. In still another embodi-
ment, a plurality of binary files corresponding to different
branches for more than one branch is allocated to a single
virtual machine. Other ways of allocating the binaries to be
built among the available virtual machines are also contem-
plated. The allocation of binaries to virtual machines will
inform the identification and transfer of files at steps 204 and
208 respectively. At a step 210, the virtual machines process
the appropriate source files in order to generate the binary
files. In some embodiments, another component, such as a
build service controller 302 of FIG. 3, causes the virtual
machines to begin this processing. Here “processing” the file
can include steps of pre-processing, compilation, assembly,
and linking, among others, and “binary files” can include
native executable files, intermediate representation files,
bytecode representation files, object files and library files,
among others. Similarly, “causing” can encompass a variety
of techniques including direct code execution, inter-process
communication, client-server or peer-to-peer messaging,
remote command execution, web services, or remote script
invocation. Other techniques for causing the virtual machines
to process the files, as would be apparent to one skilled in the
art, are also envisioned.

According to user input, build configuration files, or other
general policies, certain of the generated binary files may be
digitally signed in order to authenticate their origins, untam-
pered state, or for other reasons. Digital signature algorithms
employed can include algorithms such as RSA, DSA, Elliptic
Curve DSA, ElGamal or other secure digital signature algo-
rithms. In many environments, the digital keys necessary for
the signing process are stored only at a small number of
locations for security purposes, and are therefore not distrib-
uted to the virtual machines. Accordingly, in some embodi-
ments, after the binaries have been generated, they are trans-
ferred to a dedicated signing server for signing at a step 212.
Next, at a step 214, the corresponding digital signatures are
generated. In some embodiments, another component such as
build service controller 302, to be discussed with respect to
FIG. 3, causes this to happen by any of a variety of methods,
as described above. In a variation of this embodiment, rather
than the binaries being transferred, the appropriate virtual
machine generates a representation of the binary sufficient for
the signature to be generated. For example, many digital
signature algorithms actually sign a secure hash of the file
rather than the entire file; since the signing keys are not
necessary to generate this hash in this example, the virtual
machine can generate the hash itself and send only that to the
signing server. This scheme has the dual advantages of
decreasing the workload of the signing server as well as the
network load associated with transmitting the binary file:
instead of transmitting a (potentially very large) binary file,
only the (typically less than 1 kB) hash is sent. Here and
throughout “send” includes both sending directly and sending
indirectly by causing something to be sent. At a step 216 the
generated signatures are transferred back to the virtual

US 9,342,332 B2

7

machines. In some embodiments, binaries modified by the
addition of a digital signature are transferred back to the
virtual machines instead of a detached signature. The term
“signature” herein includes both a detached signature and a
binary modified in this fashion.

Once the binary files and signatures have been collected,
they are assembled into binary packages ata step 218. Insome
embodiments, another component such as the build service
controller 302 of FIG. 3 causes this to happen by any of a
variety of methods, as described above. In some embodi-
ments, these binary packages also contain data files not
affected by the build process. In some embodiments, the
assembly of a binary package begins as soon as those binary
files and digital signatures for that package have been col-
lected; in other embodiments, the package generation process
does not begin until the build and signature generation pro-
cesses have completely finished. Once the packages have
been generated, they are transferred off of the virtual
machines. In one embodiment, this is done by publishing
them to a storage service at a step 220. In another embodi-
ment, one or more of the virtual machines acts as a repository
and serves the virtual machines directly. Finally, in some
embodiments, a user notification is generated at a step 222.
This user notification can take a variety of forms such as an
email, an instant message, a phone call, a pop-up alert in an
application, or other alert.

Turning now to FIG. 3, an environment suitable for imple-
menting embodiments of the present invention is presented
and referred to generally by reference numeral 300. A build
service controller 302 serves, in some embodiments, as the
central controller for the system, and is functionally con-
nected to the other components. In some embodiments, the
connections are via LAN, WAN or Internet connections.
These connections may be direct or indirect. In other embodi-
ments, the components of system 300 are conceptual and
several components may be combined into a single physical
server; in those cases, the connections are in the form of
shared storage and/or inter-process communication. In some
embodiments, the build service controller maintains meta-
data to track mappings of worker VMs to code branches. In
some embodiments, the build service provides a frontend to
receive user input, display job status and provide access to
build metrics. In some embodiments, the build controller may
be responsible for scheduling the build process for future
execution. This can take the form of deferring the build until
system load is lower, or scheduling the build for a period
when expected demand is low. Other scheduling heuristics
are also contemplated. In some embodiments, the build con-
troller is responsible for dynamic virtual machine scheduling.
This can take the form of increasing or decreasing the number
of virtual machines dedicated to the build process. This can
also take the form of migrating virtual machines from a busy
virtual machine server to another, less busy, virtual machine
server. This can further take the form of manipulating the
scheduling of virtual machines within a single virtual
machine to, for example, allocate more resources to a virtual
machine with a heavy workload than to a virtual machine with
a light workload. Other forms of dynamic virtual machine
scheduling are also contemplated. Connected to the build
service controller are one or more source repositories such as
a source repository 304 and a source repository 306. Each
such source repository has associated storage, respectively
storage 308 and storage 310. The storage associated with a
source repository may be local storage, network-attached
storage, cloud-based storage, or other storage accessible by

15

40

45

8

the source repository. In some embodiments, only a single
source repository may be present; in others, many source
repositories are present.

Similarly connected to build service controller 302 is a
storage service 312, which makes binary packages (and in
some embodiments, other files as well) available to users. In
some embodiments, storage service 312 is a durable and
highly available storage service, such as a geo-replicated
cloud-based storage service. In some embodiments, the func-
tionality of storage service 312 and a source repository such
as source repository 304 is combined into a single physical
server. In other embodiments, the storage service 312 and the
source repository 304 are separate physical servers but share
common back-end storage such as storage 308. In some
embodiments, storage service 312 stores the build environ-
ments which are deployed on created virtual machines. In
other embodiments, build environments are stored on a
source repository such as source repository 304. In yet other
embodiments, build environments are stored on build service
controller 302, from which they are deployed. Any combina-
tions of storage solutions are also contemplated. Also con-
nected to build service controller 302 is a signing server 314.
Signing server 314 performs the service of generating digital
signatures for generated binary files, as discussed above with
reference to steps 212, 214, and 216 of FIG. 2. Signing server
314 stores signing keys 316, which are used to generate
digital signatures.

Finally, build service controller 302 is connected to one or
more virtual machine servers such as virtual machine servers
318 and 320. Each virtual machine server represents a physi-
cal computer which potentially runs a plurality of virtual
machines such as virtual machine 322 and 324. In some
embodiments, some or all of the virtual machines may be
dedicated to other tasks unrelated to the build service at any
given time. In some embodiments, virtual machine servers
318 and 320 are a part of a private or public compute cloud. In
some embodiments, virtual machines are instantiated as
needed and destroyed or garbage collected when they become
unneeded or unused. In some embodiments, build service
controller 302 scales the number of worker VMs used accord-
ing to the needs of the build service. Each virtual machine
such as virtual machine 322 is loaded with some set of source
and data files 326 which are used to produce binary packages,
as informed by the build environment loaded onto the virtual
machine. Note that the files 328 stored by virtual machine 324
may have complete, partial, or no overlap with the files 326
stored by virtual machine 322, or with the files stored by the
virtual machines on virtual machine server 320. Any of the
components of the build system depicted in FIG. 3 may utilize
one or more processors and/or memory to carry out the func-
tions described herein.

Turning now to FIG. 4, a flowchart diagram in accordance
with another aspect of the present invention is presented. F1G.
4 depicts a method suitable for execution by a virtual machine
such as virtual machine 322 and is referred to generally by the
reference numeral 400. Initially, at a step 402, zero or more
source files are received. The files received, in combination
with zero or more files already stored locally, are sufficient to
produce one or more binary files. Collectively, these files may
correspond to files 326 of FIG. 3. Next, at a step 404, these
files are processed to generate one or more binary files. At a
step 406, representations of the generated binary files are sent
to a signing server. In some embodiments, these representa-
tions are sent directly to the signing server; in other embodi-
ments, they are sent to the build service controller or other
intermediate host, which forwards them to the signing server.
In some embodiments, the “representations” comprise the

US 9,342,332 B2

9

entire binary file to be signed; in other embodiments, the
representations comprise a smaller amount of information
sufficient for signature generation, such as a collision-resis-
tant cryptographic hash of the binary to be signed. In still
other embodiments, such as the case of a private or testing
build, the step of signing the binary can be omitted.

Next, at a step 408, digital signatures corresponding to the
binary files to be signed are received. Again, these digital
signatures may be received directly from the signing server or
indirectly via the build service controller or another interme-
diate host. These digital signatures, together with one or more
corresponding or unsigned binary files are used to generate
binary packages at a step 410. Finally, at a step 412 the binary
packages are transmitted to another host. In some embodi-
ments, they may be transmitted to a storage service such as
storage service 312 to be published. In other embodiments,
the binary packages may be sent to the build service controller
302. In yet another embodiment, they are sent to the computer
of the user who initiated the build process.

FIG. 5 depicts a method suitable for execution by a source
repository such as source repository 304 in accordance with
embodiments of the present invention and referred to gener-
ally by reference numeral 500. Initially at a step 502, a request
is received for one or more source files. In one embodiment,
this request is received from build service controller 302 of
FIG. 3. In another embodiment, the request is received from
a virtual machine such as virtual machine 322 running on
virtual machine server 318, both of FIG. 3. Next, at a step 504,
the requested files are retrieved from storage and transmitted.
In one embodiment, they are transmitted to the requestor; in
another embodiment, they are transmitted to another host
such as build service controller 302 or virtual machine server
318 for caching and forwarding to the requestor.

FIG. 6 depicts a method suitable for execution by a signing
server such as signing server 314 in accordance with embodi-
ments of the present invention and referred to generally by
reference numeral 600. Initially, at a step 602, one or more
representations of binary files are received. In one embodi-
ment, the request is received directly from a virtual machine
such as virtual machine 322 of FIG. 3. In another embodi-
ment, the request is received via the build service controller or
other intermediate host. As discussed above, in some embodi-
ments, the representation is the entire binary file to be signed,
while in other embodiments the representation is a smaller
amount of information sufficient for signature generation. In
some embodiments, the signing server performs additional
steps such as virus scanning, verification of correct form, and
confirmation of build location before generating a signature.
Next, ata step 604, one or more digital signatures correspond-
ing to the one or more representations are generated. This can
be accomplished by any of a number of well-known digital
signature algorithms, and employs digital signature keys 316
of FIG. 3. Finally, at a step 606, the one or more generated
signatures are sent back to the requestor.

FIG. 7 depicts a method suitable for execution by a build
source controller such as build source controller 302 of FIG.
3 in accordance with embodiments of the present invention
and referred to generally by reference numeral 700. Initially,
at a step 702, a list of one or more branches to build is
determined. In one embodiment, the determination of which
branches to build is made based on user input. In another
embodiment, a configuration file is consulted to determine
which branches to build. In yet another embodiment, the
current build environment is used to determine which
branches to build. Next, at a step 704, a list of files that should
be transferred to the worker virtual machines in order to build
those branches is determined. In one embodiment, this can be

10

15

20

25

30

35

40

45

50

55

60

65

10

accomplished as described in steps 204(a)-204(f) and the
accompanying discussion of FIG. 2. Once the files have been
identified, they are retrieved from one or more source reposi-
tories such as source repository 304 and source repository
306 of FIG. 3 at a step 706 and transferred to the appropriate
virtual machines at a step 708. Again, certain files may be
used by multiple virtual machines and accordingly are trans-
ferred to each of those machines. In one embodiment, virtual
machines are grouped onto virtual machine servers according
to the degree of commonality of files that they will use in
order to minimize the network overhead of file transfers. In
another embodiment, copies of files transferred are main-
tained so that they need not be re-fetched from a source
repository if they are needed again in the future.

Next, at a step 710, representations of binary files to be
signed are received at the computer executing method 700; in
certain embodiments, this will be build service controller 302
of FIG. 3. In one embodiment, they are received from the
virtual machines which generated the binary files. In one
embodiment, the entire binary file is received and a more
compact representation is generated for subsequent retrans-
mission. Then, at a step 712, the representations are for-
warded (e.g. sent) to a signing server such as signing server
314. Subsequently, at a step 714, digital signatures corre-
sponding to the representations are received back from the
signing server and, at a step 716, they are forwarded to the
appropriate virtual machines. In some embodiments, the
appropriate virtual machine is the virtual machine that cre-
ated the corresponding binary files; in others, it is another
virtual machine that is responsible for binary package cre-
ation. At a step 718, binary packages comprising binary files
corresponding to the source files and digital signatures are
received. In one embodiment, they are received from the
virtual machines that created them. In another embodiment,
they further comprise data files that were unchanged by the
build process. Next, at a step 720, these packages are made
available for subsequent retrieval. In one embodiment, this is
accomplished by publishing them to a storage service. In
another embodiment, it is accomplished by transferring them
to a predetermined location. In yet another embodiment, it is
accomplished by storing them locally until they are retrieved
by a user. Finally, at a step 722, a notification is generated to
alert a user that the packages are available. This notification
can take any of the forms discussed with reference to step 222
of FIG. 2.

Turning now to FIG. 8, a flowchart diagram in accordance
with yet another aspect of the present invention is depicted,
suitable for execution by a virtual machine server such as
virtual machine server 318 of F1G. 3 and referred to generally
by reference numeral 800. In some embodiments, the virtual
machine server 318 of FIG. 3 is a single physical machine
such as a laptop, desktop, or server-class computer. In other
embodiments, virtual machine server 318 can itself be a dis-
tributed computing environment such as a server farm.

Initially, at a step 802, a list of one or more branches and
source files is received. In one embodiment, only a list of
source files is received and the source files are retrieved from
a source repository such as source repository 304. In another
embodiment, the source files are received together with the
list of one or more branches. Next, at a step 804, one or more
virtual machines are instantiated. As discussed above in the
discussion of allocating binaries to virtual machines, a num-
ber of allocation strategies are envisioned, and the precise
allocation strategy used will inform the number of virtual
machines instantiated. The step 804 further includes prepar-
ing the virtual machines to participate in the build service.
The preparation includes deployment of the build environ-

US 9,342,332 B2

11

ment. The build environment can be loaded onto the worker
VM during instantiation, or pushed to the worker VMs by
build system controller 302 after instantiation. After the vir-
tual machines have been instantiated, the appropriate source
files are transferred to each virtual machine at a step 806.

Next, at a step 808, the binary files generated from those
source files are collected from the virtual machines. In one
embodiment, compact representations of the binary files are
generated for the purposes of signing them. Next, at a step
810, digital signatures for the binaries are acquired. In one
embodiment, this is accomplished by communicating
directly with signing server 314 of FIG. 3; in another embodi-
ment, it is accomplished by communicating with signing
server 314 via build service controller 302 of FIG. 3. Atastep
812, binary packages are generated from the binary files, the
digital signatures, and in some embodiments, other data files.
Next, ata step 814, the binary packages are made available for
retrieval. In one embodiment, this comprises transmitting
them to the location from which they will be retrieved. In
another embodiment, it comprises placing them in a well-
known local location on the VM from which a software agent
or human can retrieve them. Finally, at a step 816, a notifica-
tion is generated. In one embodiment, this is a user notifica-
tion; in another embodiment it consists of notifying a soft-
ware agent.

Alternative embodiments and implementations of the
present invention will become apparent to those skilled in the
art to which it pertains upon review of the specification,
including the drawing figures. Accordingly, the scope of the
present invention is defined by the claims that appear in the
“claims” section of this document, rather than the foregoing
description.

The invention claimed is:

1. A computer-implemented method, suitable for use in a
distributed computing environment, utilizing a processor and
a memory for implementing a scalable and distributed build
service, the method comprising:

determining a branch to build;

identifying a virtual machine for building at least a part of

the branch;

identifying a plurality of source files to be transferred for

the branch, wherein the virtual machine processes at
least a source file of the plurality of source files to gen-
erate a corresponding binary file;

transferring the source file of the plurality of source files to

the virtual machine;

deploying a build environment on the virtual machine on

demand, based on requiring resources of the virtual
machine;

causing, using one or more processors, the virtual machine

to process at least the source file of the plurality of source
files so as to generate a binary file; and

causing a signing server to generate a digital signature for

the binary file based on a representation of the binary
file, the signing server being different from the virtual
machine.

2. The computer-implemented method of claim 1, further
comprising:

transferring the digital signature to the virtual machine;

causing at least the virtual machine to generate a binary

package from at least the binary file and the digital
signature; and

retrieving the binary package from the virtual machine.

3. The computer-implemented method of claim 2, further
comprising:

causing the virtual machine to make the binary package

available for subsequent retrieval.

5

15

20

25

30

35

40

45

50

55

60

12

4. The computer-implemented method of claim 3, further
comprising:

generating a user notification that the binary package is
available for retrieval.

5. The computer-implemented method of claim 2, further

comprising:

causing the virtual machine to publish the binary package
to a storage service.

6. The computer-implemented method of claim 1, wherein
identifying a plurality of source files to be transferred com-
prises:

obtaining a list of source files used to build the branch;

determining, for a selected source file of the list of source
files used to build the branch:

(1) a destination virtual machine to which the selected
source file is to be transferred;

(2) whether the destination virtual machine is currently
storing a source file that is in part identical to the selected
source file; and

a) if the destination virtual machine is currently storing a
source file that overlaps substantially identical to the
selected source file, identitying the selected source file
as not to be transferred; and

b) if the destination virtual machine is not currently storing
a source file that overlaps substantially identical to the
selected source file, identitying the selected source file
as to be transferred.

7. The computer-implemented method of claim 1, wherein
identifying a virtual machine for building at least a part of the
branch comprises: determining whether a first virtual
machine server has an idle virtual machine;

if the first virtual machine server has an idle virtual
machine, identifying the idle virtual machine as the vir-
tual machine for building at least a part of the branch;
and

if the first virtual machine server does not have an idle
virtual machine, instantiating a new virtual machine and
identifying the new virtual machine as the virtual
machine for building at least a part of the branch.

8. One or more hardware-implemented computer storage
media having computer-executable instructions embodied
thereon that, when executed, cause a computing device to
perform a method of distributing a scalable build service, the
method comprising:

receiving, at a virtual machine, a source file for a branch,
wherein the virtual machine is one of a plurality of
virtual machines, the virtual machine configured with a
build environment, wherein the plurality of virtual
machines are instantiated on demand, based on requir-
ing build environment resources of the plurality of vir-
tual machines;

generating a binary file based on processing the source file;

generating a binary package from at least the binary file and
a digital signature corresponding to the binary file,
wherein the digital signature is generated at a signing
server based on a representation of the binary file, the
signing server being different from the virtual machine;
and

sending the binary package to a predetermined location.

9. The computer storage media of claim 8, wherein the
build

environment further comprises an agent that responds to a
build service controller to facilitate activities in the build
environment.

10. The computer storage media of claim 8, wherein the

build service controller performs at least the following sub-

US 9,342,332 B2

13

functions of the function of identifying plurality of source
files to be transferred for the branch:

obtains a list of source files used to build the branch;

determines, for a selected source file of the list of source
files used to build the branch:

(1) a destination virtual machine to which the selected
source file is to be transferred;

(2) whether the destination virtual machine is currently
storing a source file that overlaps the selected source file;
and

a) if the destination virtual machine is currently storing a
source file that overlaps the selected source file, identi-
fies the selected source file as not to be transferred; and

b) if the destination virtual machine is not currently storing
a source file that overlaps the selected source file, iden-
tifies the selected source file as to be transferred.

11. The computer storage media of claim 8, wherein the
build environment responds to direct user input in order to
perform functions in the build environment.

12. The computer storage media of claim 8, wherein the
virtual machine generates the entire binary file associated
with a given branch.

13. The computer storage media of claim 8, wherein the
binary file is allocated to the virtual machine for generation
such that a load of generating the binary file is balanced
among the virtual machines.

14. The computer storage media of claim 8, wherein a
plurality of binary files corresponding to different branches is
allocated to a single virtual machine.

15. A scalable and distributed build service system com-
prising:

a plurality of virtual machines, a virtual machine in the
plurality of virtual machines is adapted to perform the
following functions:

receiving, a source file for a branch, wherein the virtual
machine is configured with a build environment, and
wherein the plurality of virtual machines are instantiated
on demand, based on requiring build environment
resources of the plurality of virtual machines;

generating a binary file based on processing the source file;

generating a binary package from at least the binary fileand
a digital signature corresponding to the binary file,
wherein the digital signature is generated at a signing
server based on a representation of the binary file, the
signing server being different from the virtual machine;
and

sending the binary package to a predetermined location;

a build service controller adapted to perform the following
functions:

determining a branch to build;

identifying a virtual machine for building at least a part of
the branch;

identifying a plurality of source files to be transferred for
the branch, wherein the virtual machine processes at

15

20

25

30

35

40

45

14

least the source file of the plurality of source files to
generate a corresponding binary file;

transferring the source file of the plurality of source files to

the virtual machine;

deploying the build environment on the virtual machine;

and

causing the virtual machine to process at least the source

file of the plurality of source files so as to generate the
binary file.

16. The system of claim 15, wherein identifying the virtual
machine for building at least a part of the branch comprises:

determining whether a first virtual machine server has an

idle virtual machine;

if the first virtual machine server has an idle virtual

machine, identifying the idle virtual machine as the vir-
tual machine for building at least a part of the branch;
and

if the first virtual machine server does not have an idle

virtual machine, instantiating a new virtual machine and
identifying the new virtual machine as the virtual
machine for building at least a part of the branch.

17. The system of claim 16, wherein the build service
controller is further adapted to perform the following func-
tions:

providing a frontend to receive user input;

displaying a job status of generating the binary file; and

providing access to build metrics for the plurality of virtual

machines.

18. The system of claim 15, further comprising the signing
server adapted to perform the following functions:

receiving the representation of the binary file;

generating the digital signature corresponding to the rep-

resentation of the binary file; and

communicating the digital signature.

19. The system of claim 16, wherein the build service
controller is further adapted to perform the following func-
tions:

scheduling a build process for execution;

deferring the build process when a load on the plurality of

virtual machines is high; and

scheduling the build process when an expected demand for

the plurality of virtual machines is low.

20. The system of claim 16, wherein the build service
controller is further adapted to perform the following func-
tions:

causing the digital signature for the binary file to be gen-

erated;

transferring the digital signature to the virtual machine;

and

causing at least one of the plurality of virtual machines to

generate a binary package from at least the binary file
and the digital signature.

#* #* #* #* #*

